4.6 Article

Impact of moisture flux convergence and soil moisture on precipitation: a case study for the southern United States with implications for the globe

Journal

CLIMATE DYNAMICS
Volume 46, Issue 1-2, Pages 467-481

Publisher

SPRINGER
DOI: 10.1007/s00382-015-2593-2

Keywords

Southern US; WRF; Soil moisture; Moisture flux convergence; Land-atmosphere interaction

Funding

  1. Jackson School of Geosciences at UT-Austin
  2. King Abdullah University of Science and Technology
  3. NASA [NNX12AJ51G]
  4. NASA [NNX12AJ51G, 43394] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Interactions between soil moisture, evapotranspiration (ET), atmospheric moisture fluxes and precipitation are complex. It is difficult to attribute the variations of one variable to another. In this study, we investigate the influence of atmospheric moisture fluxes and land surface soil moisture on local precipitation, with a focus on the southern United States (U.S.), a region with a strong humidity gradient and intense moisture fluxes. Experiments with the Weather Research and Forecasting model show that the variation of moisture flux convergence (MFC) is more important than that of soil moisture for precipitation variation over the southern U.S. Further analyses decompose the precipitation change into several contributing factors and show that MFC affects precipitation both directly through changing moisture inflow (wet areas) and indirectly by changing the precipitation efficiency (transitional zones). Soil moisture affects precipitation mainly by changing the precipitation efficiency, and secondly through direct surface ET contribution. The greatest soil moisture effects are over transitional zones. MFC is more important for the probability of heavier rainfall; soil moisture has much weaker impact on rainfall probability and its roles are similar for the probability of intermediate-to-heavy rainfall (>10 mm day(-1)). Although MFC is more important than soil moisture for precipitation over most regions, the impact of soil moisture could be large over certain transitional regions. At the submonthly time scale, the African Sahel appears to be the only major region where soil moisture has a greater impact than MFC on precipitation. This study provides guidance to understanding and further investigation of the roles of local land surface processes and large-scale circulations on precipitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available