4.6 Article

The resolution sensitivity of the South Asian monsoon and Indo-Pacific in a global 0.35A° AGCM

Journal

CLIMATE DYNAMICS
Volume 46, Issue 3-4, Pages 807-831

Publisher

SPRINGER
DOI: 10.1007/s00382-015-2614-1

Keywords

Asian monsoon; Maritime Continent; Orography; High resolution; African highlands; Monsoon depressions

Funding

  1. Natural Environment Research Council (NERC) under University of Reading [R8/H9/37]
  2. Met Office under University of Reading [R8/H9/37]
  3. NERC Fellowship [NE/H015655/1]
  4. Joint UK DECC/Defra Met Office Hadley Centre Climate Programme [GA01101]
  5. NERC Changing Water Cycle (CWC) SAPRISE Project [NE/I022841/1, NE/I022469/1]
  6. European Commission [282672]
  7. National Centre for Atmospheric Science Climate directorate (NCAS-Climate), a collaborative centre of NERC
  8. UK Technology Strategy Board Knowledge Transfer Partnership
  9. NERC [NE/H015655/1, jwcrp01003, NE/I022841/1, NE/I022469/1, NE/L01386X/1, jwcrp01004] Funding Source: UKRI
  10. Natural Environment Research Council [NE/I022841/1, ncas10009, NE/H015655/1, jwcrp01003, NE/L01386X/1, jwcrp01004, NE/I022469/1] Funding Source: researchfish

Ask authors/readers for more resources

The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world's population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200-40 km at the equator (N96-N512, 1.9A degrees-0.35A degrees). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution-related processes cause these changes, we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available