4.5 Article Proceedings Paper

Electrodeposited copper foams as substrates for thin film silicon electrodes

Journal

SOLID STATE IONICS
Volume 288, Issue -, Pages 204-206

Publisher

ELSEVIER
DOI: 10.1016/j.ssi.2016.02.001

Keywords

Silicon; Thin film; Lithium-ion battery; Copper foam; Electrodeposition

Ask authors/readers for more resources

Although a significant amount of effort has been put into investigating elemental silicon as a lithium-ion battery anode material, limited progress has occurred in translating these results to create a long lived electrode. Several electrode level solutions have been reported including utilizing Si nanowires, thin films, and nanoparticle assemblies, where the physical diffusion distances are kept very short. For thin film based electrodes, the benefits of the simplified structure of the electrode are countered by the low surface area and low silicon loadings. In this study we have utilized electrodeposition techniques to deposit silicon films on a porous copper substrate. This greatly increases the electrode surface area and loadings while maintaining the advantages of a thin film electrode. Using 3d-silicon electrodes without a binder or conductive matrix, stable capacities of similar to 1000 mAh/g have been achieved. In general, electrodes with lower loadings of active silicon (<1 mg/cm(2)) displayed better rate capability than electrodes with higher loadings (>2.5 mg/cm(2)). (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available