4.4 Article

Phosphorus Speciation in Calcareous Soils Following Annual Dairy Manure Amendments

Journal

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
Volume 80, Issue 6, Pages 1531-1542

Publisher

SOIL SCI SOC AMER
DOI: 10.2136/sssaj2016.09.0280

Keywords

-

Categories

Funding

  1. National Institute of Food and Agriculture, USDA [2013-67020-21352]
  2. Natural Sciences and Engineering Research Council of Canada
  3. National Research Council Canada
  4. Canadian Institutes of Health Research
  5. Province of Saskatchewan
  6. Western Economic Diversification Canada
  7. University of Saskatchewan
  8. Agriculture and Agri-Food Canada through the Growing Forward 2 program

Ask authors/readers for more resources

Applying manure to crops may alter P speciation in the soil profile and thus affect its availability for plant uptake and transport to surface waters. The goal of this research was to determine how repeated manure amendments affect P speciation within calcareous soil. Soil samples were collected in 2013, 2014, and 2015 from two depths to analyze differences in P composition following annual applications of 17 Mg ha(-1) manure, 52 Mg ha(-1) manure, or NH4H2PO4 fertilizer, and control plots (no P). To speciate the soil P, sequential chemical extraction, P K-edge X-ray adsorption near-edge structure (XANES) spectroscopy, P-31 nuclear magnetic resonance spectroscopy, and microprobe element mapping were used. Total P concentration in the manure-amended soils increased over 3 yr. The highest soil test P concentrations were in the 52 Mg ha(-1) plots. Most extractable P in the sequential extraction procedure was removed with the most aggressive extractant, suggesting that the predominant form of P is associated with Ca-P minerals. The XANES results showed that P species were similar among all amendments and years: 54 to 74% Ca-P minerals (e.g., hydroxyapatite), 25 to 35% adsorbed P, and 0 to 19% organic P (predominantly phytic acid). Despite the poorly soluble Ca-P species predominating in all soils, soil test P increased in the manure-amended soils. The P speciation results provide a baseline to compare how long-term changes affect P availability and will be useful for designing long-term scenarios in manure-amended calcareous soils to limit excess soil P that could leach into water.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available