4.5 Article

Dye removal from aqueous solution using coal fly ash for continuous flow adsorption

Journal

CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
Volume 17, Issue 7, Pages 1907-1915

Publisher

SPRINGER
DOI: 10.1007/s10098-015-0908-y

Keywords

Coal fly ash; Dye; Adsorption; CSTR

Ask authors/readers for more resources

Coal fly ash was characterized at first in batch adsorption with acid and basic dyes. Good results of removal were obtained, although strongly dependent on initial dye concentration, ash dosage, and above all on pH of the solution. The maximum adsorption capacities per g of fly ash were 410 mg of Acid Blue 25 and 142 mg of Basic Blue 9, both with an ash dosage of 2 g/L at pH 11 after a contact time of 1 h. However, increasing the ash dosage to 20 g/L and contact time to 24 h, the maximum adsorption capacity of Basic Blue 9 raised 187 mg/g fly ash at pH 11, but this value was lowered to 8.4 mg/g at pH 7. Afterwards, flow experiments were carried out in semi-batch mode with a fixed amount of ash and continuous flow of dye solution in continuous stirred tank reactor, to determine the exhaustion curves of fly ash. The best fit of the results was obtained by a sigmoidal function referable to the breakthrough curve model of Yoon-Nelson. Successively, to reduce the alkali leaching by solution flow, in a semi-pilot scale plant, a continuous stream of dye solution was mixed in stirred tank reactor with a continuous ash slurry supply, and the resulting slurry was decanted in a settling tank to obtain a clarified supernatant stream outlet. In this last equipment, the optimum conditions were investigated to obtain the highest yields of dye removal from solutions at low concentrations (5-20 mg/L) such as those occur in rinsing waters arising from dyeing processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available