4.7 Article

Effects of subsoil compaction on hydraulic properties and preferential flow in a Swedish clay soil

Journal

SOIL & TILLAGE RESEARCH
Volume 156, Issue -, Pages 91-98

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.still.2015.09.013

Keywords

Compaction; Preferential flow; Solute breakthrough test; Computer tomography

Categories

Funding

  1. Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas)
  2. Swiss National Science Foundation (SNSF), National Research Programme Sustainable use of soil as a resource (NRP 68) [143061]

Ask authors/readers for more resources

Soil compaction by vehicular traffic modifies the pore structure and soil hydraulic properties. These changes potentially influence the occurrence of preferential flow, which so far has been little studied. Our aim was to study the effect of compaction on soil hydraulic and transport properties in subsoil. A randomized block design trial at two sites on a well-structured clay soil in central Sweden was established. Plots with two levels of compaction were created at both sites, in the following referred to as trafficked and control. The trafficked treatment was created by 4 passes track-by-track with a three-axle dumper with a maximum wheel load of 5.8 Mg. After one year, undisturbed soil columns (20 cm height x 20 cm diameter) from both trafficked and control plots at a depth of 30-50 cm were sampled. The columns were analyzed using X-ray CT imaging, together with measures of the degree of preferential transport derived from non-reactive tracer breakthrough curves and measurements of saturated hydraulic conductivity (K-s) and air permeability at the field moisture content (K-a). Although the traffic treatment did not cause any compaction effects at one of the two sites, it did result in significant reductions in saturated hydraulic conductivity, air permeability and number of macropores at the second site. At this site, the traffic also significantly reduced the strength of preferential flow, presumably due to compaction-induced disruption of macropore continuity. In apparent contrast, some previous studies have shown increases in the strength of preferential flow as a result of compaction. We propose a conceptual model to explain these apparently contradictory results, which suggests that preferential flow should be strongest at some intermediate level of compaction. (c) 2015 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available