4.6 Article

Biophysical characterization of organelle-based RNA/protein liquid phases using microfluidics

Journal

SOFT MATTER
Volume 12, Issue 45, Pages 9142-9150

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sm01087c

Keywords

-

Funding

  1. Princeton Center for Complex Materials, a MRSEC - NSF Grant [DMR 1420541]
  2. NIH Director's New Innovator Award [1DP2GM105437-01]
  3. NSF CAREER award [1253035]
  4. NSF Graduate Research Fellowship award [DGE 1148900]
  5. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [DP2GM105437] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Living cells contain numerous membrane-less RNA/protein (RNP) bodies that assemble by intracellular liquid-liquid phase separation. The properties of these condensed phase droplets are increasingly recognized as important in their physiological function within living cells, and also through the link to protein aggregation pathologies. However, techniques such as droplet coalescence analysis or standard microrheology do not always enable robust property measurements of model RNA/protein droplets in vitro. Here, we introduce a microfluidic platform that drives protein droplets into a single large phase, which facilitates viscosity measurements using passive microrheology and/or active two-phase flow analysis. We use this technique to study various phase separating proteins from structures including P granules, nucleoli, and Whi3 droplets. In each case, droplets exhibit simple liquid behavior, with shear rate-independent viscosities, over observed timescales. Interestingly, we find that a reported order of magnitude difference between the timescale of Whi3 and LAF-1 droplet coalescence is driven by large differences in surface tension rather than viscosity, with implications for droplet assembly and function. The ability to simultaneously perform active and passive microrheological measurements enables studying the impact of ATP-dependent biological activity on RNP droplets, which is a key area for future research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available