4.8 Article

915 nm Light-Triggered Photodynamic Therapy and MR/CT Dual-Modal Imaging of Tumor Based on the Nonstoichiometric Na0.52YbF3.52:Er Upconversion Nanoprobes

Journal

SMALL
Volume 12, Issue 31, Pages 4200-4210

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201601023

Keywords

-

Funding

  1. National Natural Science Foundation of China [21403288, 21173253, 21273271, 21403289]
  2. National Natural Science Foundation of Jiangsu Province [BK20140382]

Ask authors/readers for more resources

Lanthanide (Ln(3+))-doped upconversion nanoparticles (UCNPs) as a new generation of multimodal bioprobes have attracted great interest for theranostic purpose. Herein, red emitting nonstoichiometric Na0.52YbF3.52:Er UCNPs of high luminescence intensity and color purity are synthesized via a facile solvothermal method. The red UC emission from the present nanophosphors is three times more intense than the well-known green emission from the approximate to 30 nm sized hexagonal-phase NaYF4:Yb,Er UCNPs. By utilizing Na0.52YbF3.52:Er@SrF2 UCNPs as multifunctional nanoplatforms, highly efficient in vitro and in vivo 915 nm light-triggered photodynamic therapies are realized for the first time, with dramatically diminished overheating yet similar therapeutic effects in comparison to those triggered by 980 nm light. Moreover, by virtue of the high transverse relaxivity (r(2)) and the strong X-ray attenuation ability of Yb3+ ions, these UCNPs also demonstrate good performances as contrast agents for high contrast magnetic resonance and X-ray computed tomography dual-modal imaging. Our research shows the great potential of the red emitting Na0.52YbF3.52:Er UCNPs for multimodal imaging-guided photodynamic therapy of tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available