4.8 Article

Capillary Origami Inspired Fabrication of Complex 3D Hydrogel Constructs

Journal

SMALL
Volume 12, Issue 33, Pages 4492-4500

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201601147

Keywords

-

Funding

  1. National Natural Science Foundation of China [11372243, 11522219, 11532009]
  2. Fundamental Research Funds for the Central Universities [xjj2016074]
  3. China Postdoctoral Science Foundation [2015M570826]
  4. National Engineering Laboratory for Highway Maintenance Equipment (Chang'an University) [310825161103]
  5. Foundation of Shaanxi Postdoctoral Science

Ask authors/readers for more resources

Hydrogels have found broad applications in various engineering and biomedical fields, where the shape and size of hydrogels can profoundly influence their functions. Although numerous methods have been developed to tailor 3D hydrogel structures, it is still challenging to fabricate complex 3D hydrogel constructs. Inspired by the capillary origami phenomenon where surface tension of a droplet on an elastic membrane can induce spontaneous folding of the membrane into 3D structures along with droplet evaporation, a facile strategy is established for the fabrication of complex 3D hydrogel constructs with programmable shapes and sizes by crosslinking hydrogels during the folding process. A mathematical model is further proposed to predict the temporal structure evolution of the folded 3D hydrogel constructs. Using this model, precise control is achieved over the 3D shapes (e.g., pyramid, pentahedron, and cube) and sizes (ranging from hundreds of micrometers to millimeters) through tuning membrane shape, dimensionless parameter of the process (elastocapillary number C-e), and evaporation time. This work would be favorable to multiple areas, such as flexible electronics, tissue regeneration, and drug delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available