4.5 Article

EEG-based prediction of driver's cognitive performance by deep convolutional neural network

Journal

SIGNAL PROCESSING-IMAGE COMMUNICATION
Volume 47, Issue -, Pages 549-555

Publisher

ELSEVIER
DOI: 10.1016/j.image.2016.05.018

Keywords

Deep neural network; Convolutional neural network; Cognitive states

Ask authors/readers for more resources

We considered the prediction of driver's cognitive states related to driving performance using EEG signals. We proposed a novel channel-wise convolutional neural network (CCNN) whose architecture considers the unique characteristics of EEG data. We also discussed CCNN-R, a CCNN variation that uses Restricted Boltzmann Machine to replace the convolutional filter, and derived the detailed algorithm. To test the performance of CCNN and CCNN-R, we assembled a large EEG dataset from 3 studies of driver fatigue that includes samples from 37 subjects. Using this dataset, we investigated the new CCNN and CCNN-R on raw EEG data and also Independent Component Analysis (ICA) decomposition. We tested both within-subject and cross-subject predictions and the results showed CCNN and CCNN-R achieved robust and improved performance over conventional DNN and CNN as well as other non-DL algorithms. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available