4.7 Article

Matrigel Mattress A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Journal

CIRCULATION RESEARCH
Volume 117, Issue 12, Pages 995-+

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/CIRCRESAHA.115.307580

Keywords

excitation contraction coupling; matrigel; myocytes, cardiac; pluripotent stem cells; stem cells

Funding

  1. US National Institutes of Health [R01HL088635, R01HL071670, R01HL0108173, R01HL0104040, R01 HL126527, R24 HL117756]
  2. American Heart Association [13IRG13680003, 14POST19550002]
  3. Veterans Administration Merit Grant [BX000771]

Ask authors/readers for more resources

Rationale: The lack of measurable single-cell contractility of human-induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) currently limits the utility of hiPSC-CMs for evaluating contractile performance for both basic research and drug discovery. Objective: To develop a culture method that rapidly generates contracting single hiPSC-CMs and allows quantification of cell shortening with standard equipment used for studying adult CMs. Methods and Results: Single hiPSC-CMs were cultured for 5 to 7 days on a 0.4- to 0.8-mm thick mattress of undiluted Matrigel (mattress hiPSC-CMs) and compared with hiPSC-CMs maintained on a control substrate (<0.1-mm thick 1: 60 diluted Matrigel, control hiPSC-CMs). Compared with control hiPSC-CMs, mattress hiPSC-CMs had more rod-shape morphology and significantly increased sarcomere length. Contractile parameters of mattress hiPSC-CMs measured with video-based edge detection were comparable with those of freshly isolated adult rabbit ventricular CMs. Morphological and contractile properties of mattress hiPSC-CMs were consistent across cryopreserved hiPSC-CMs generated independently at another institution. Unlike control hiPSC-CMs, mattress hiPSC-CMs display robust contractile responses to positive inotropic agents, such as myofilament calcium sensitizers. Mattress hiPSC-CMs exhibit molecular changes that include increased expression of the maturation marker cardiac troponin I and significantly increased action potential upstroke velocity because of a 2-fold increase in sodium current (I-Na). Conclusions: The Matrigel mattress method enables the rapid generation of robustly contracting hiPSC-CMs and enhances maturation. This new method allows quantification of contractile performance at the single-cell level, which should be valuable to disease modeling, drug discovery, and preclinical cardiotoxicity testing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available