4.7 Article

An assay for determining minimal concentrations of antibiotics that drive horizontal transfer of resistance

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 548, Issue -, Pages 131-138

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2016.01.044

Keywords

Conjugation; Tetracycline; Antibiotic resistance; Mobile genetic elements; Sub-inhibitory concentration

Funding

  1. Swedish Research Council FORMAS [521-2010-3142]
  2. Swedish Research council VR [244314724]
  3. MISTRA [2004-147]

Ask authors/readers for more resources

Ability to understand the factors driving horizontal transfer of antibiotic resistance from unknown, harmless bacteria to pathogens is crucial in order to tackle the growing resistance problem. However, current methods to measure effects of stressors on horizontal gene transfer have limitations and often fall short, as the estimated endpoints can be a mix of both the number of transfer events and clonal growth of transconjugants. Our aim was therefore to achieve a proper strategy for assessing the minimal concentration of a stressor (exemplified by tetracycline) that drives horizontal transfer of antibiotic resistance from a complex community to a model pathogen. Conditions were optimized to improve a culture-based approach using the bacterial community of treated sewage effluent as donor, and fluorescent, traceable Escherichia coli as recipient. Reduced level of background resistance, differentiation of isolates as well as decreased risk for measuring effects of selection were achieved through the use of chromogenic medium, optimization of conjugation time as well as applying a different antibiotic for isolation of transconjugants than the one tested for its ability to drive transfer. Using this assay, we showed that a very low concentration of tetracycline, 10 mu g/L i.e. 150 times below the minimal inhibitory concentration of the recipient, promoted horizontal transfer of multiple antibiotic-resistance determinants. Higher concentrations favoured selection of a tetracycline-resistance phenotype along with a decline in the number of detectable transfer events. The described method can be used to evaluate different environmental conditions and factors that trigger horizontal dissemination of mobile resistance elements, eventually resulting in the formation of drug-resistant pathogens. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available