4.7 Article

ROS production and gene expression in alveolar macrophages exposed to PM2.5 from Baghdad, Iraq: Seasonal trends and impact of chemical composition

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 543, Issue -, Pages 739-745

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2015.11.065

Keywords

Urban aerosols; Particulate matter; ROS; Chemical composition; Inflammation; Gene expression

Funding

  1. Iraqi Ministry of Higher Education and Scientific Research

Ask authors/readers for more resources

The objective of this study was to assess the impact of changes in atmospheric particulate matter (PM) composition on oxidative stress markers in an in-vitro alveolar macrophage (AM) model. Fifty-three PM2.5 samples were collected during a year-long PM sampling campaign in Baghdad, Iraq, a semi-arid region of the country. Monthly composites were analyzed for chemical composition and for biological activity using in-vitro measurements of ROS production and gene expression in the AM model. Twelve genes that were differentially expressed upon PM exposure were identified and their co-associations with the composition of PM2.5 were examined. Ten of those genes were up-regulated in January and April composites; samples which also exhibited high ROS activity and relatively high PM mass concentration. ROS production was statistically correlated with total PM2.5 mass, levoglucosan (a wood burning tracer) and several trace elements of the PM (especially V and Ni, which are associated with oil combustion). The expression of several cytokine genes was found to be moderately associated with PM mass, crustal materials (indication of dusty days or dust storms) and certain metals (e.g. V, Fe and Ni) in the PM. Thus, the ROS activity association with PM2.5, may, in part, be driven by redox-active metals. The antioxidant response genes (Nqo1 and Hmox1) were moderately associated with polyaromatic hydrocarbons (PAHs) and showed a good correlation (r-Pearson of >0.7) with metals linked to vehicle-related emissions (i.e. Cu, Zn and Sb). Examining these associations in a larger sample pool (e.g. daily samples) would improve the power of the analysis and may strengthen the implication of these chemicals in the oxidative stress of biological systems, which could aid in the development of new metrics of PM toxicity. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available