4.7 Article

Using spatially explicit indicators to investigate watershed characteristics and stream temperature relationships

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 551, Issue -, Pages 376-386

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2016.02.042

Keywords

Stream temperature; Landscape; Distance-weighted; Geographic information system; Spatial analysis; Urban ecosystem

Funding

  1. National Science Foundation GRFP [DGE-1057604]
  2. NSF-IGERT Program [0966376]
  3. NSF-BES Grant [1026629]
  4. Institute for Sustainable Solutions at PSU
  5. Division Of Behavioral and Cognitive Sci
  6. Direct For Social, Behav & Economic Scie [1026629] Funding Source: National Science Foundation
  7. Office of Advanced Cyberinfrastructure (OAC)
  8. Direct For Computer & Info Scie & Enginr [1541469] Funding Source: National Science Foundation

Ask authors/readers for more resources

We generate a series of novel indicators of spatially explicit watershed permeability and runoff characteristics to examine the relationship between land cover and water temperature parameters in a rapidly urbanizing watershed. Our framework provides a readily adaptable method to examine the thermal sensitivity of streams based upon the underlying geomorphological and surface characteristics of drainage basins. Using four model groups each using a different landscape characteristic weighting scheme (Model Group 1: areal averages; Model Group 2: inverse distance by total flow length; Model Group 3: overland distance to stream network and distance squared; Model Group 4: proportional flow accumulation), we examined the predictive capacity of 19 variables, including combinations of simplified land cover, elevation, slope, and flow accumulation, on five stream thermal properties: seven day moving average of daily minimum and maximum, seasonal mean temperature, a novel metric of thermal 'flashiness', and total days with maximum temperature exceeding 17.8 degrees C. We find that the use of spatially explicit landscape indicators combining watershed processes improves the performance of regressions for predicting a number of ecologically relevant stream temperature variables. Improved indicators of watershed condition lend themselves for rapid investigation of the relationship between stream thermal conditions and landscape characteristics in watersheds modified by human land uses, ultimately providing a more hydrologically meaningful indicator for the impacts of landscape change. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available