4.8 Article

Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability

Journal

SCIENCE
Volume 351, Issue 6275, Pages 846-849

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.aad5634

Keywords

-

Funding

  1. Wellcome Trust [WT096598MA]
  2. Medical Research Council (MRC)
  3. MRC [MC_UU_12016/1] Funding Source: UKRI
  4. Medical Research Council [MC_UU_12016/1] Funding Source: researchfish

Ask authors/readers for more resources

Mono-ubiquitination of Fancd2 is essential for repairing DNA interstrand cross-links (ICLs), but the underlying mechanisms are unclear. The Fan1 nuclease, also required for ICL repair, is recruited to ICLs by ubiquitinated (Ub) Fancd2. This could in principle explain how Ub-Fancd2 promotes ICL repair, but we show that recruitment of Fan1 by Ub-Fancd2 is dispensable for ICL repair. Instead, Fan1 recruitment-and activity-restrains DNA replication fork progression and prevents chromosome abnormalities from occurring when DNA replication forks stall, even in the absence of ICLs. Accordingly, Fan1 nuclease-defective knockin mice are cancer-prone. Moreover, we show that a Fan1 variant in high-risk pancreatic cancers abolishes recruitment by Ub-Fancd2 and causes genetic instability without affecting ICL repair. Therefore, Fan1 recruitment enables processing of stalled forks that is essential for genome stability and health.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available