4.6 Review

Pathogenesis of central and complex sleep apnoea

Journal

RESPIROLOGY
Volume 22, Issue 1, Pages 43-52

Publisher

WILEY
DOI: 10.1111/resp.12927

Keywords

central apnoea; loop gain; periodic breathing; ventilatory instability

Funding

  1. NHLBI NIH HHS [R21 HL121794, R01 HL128658, T32 HL134632, R01 HL081823, L30 HL129451, F32 HL131306, K24 HL132105, R01 HL119201, R01 HL085188] Funding Source: Medline

Ask authors/readers for more resources

Central sleep apnoea (CSA) - the temporary absence or diminution of ventilatory effort during sleep - is seen in a variety of forms including periodic breathing in infancy and healthy adults at altitude and Cheyne-Stokes respiration in heart failure. In most circumstances, the cyclic absence of effort is paradoxically a consequence of hypersensitive ventilatory chemoreflex responses to oppose changes in airflow, that is elevated loop gain, leading to overshoot/undershoot ventilatory oscillations. Considerable evidence illustrates overlap between CSA and obstructive sleep apnoea (OSA), including elevated loop gain in patients with OSA and the presence of pharyngeal narrowing during central apnoeas. Indeed, treatment of OSA, whether via continuous positive airway pressure (CPAP), tracheostomy or oral appliances, can reveal CSA, an occurrence referred to as complex sleep apnoea. Factors influencing loop gain include increased chemosensitivity (increased controller gain), reduced damping of blood gas levels (increased plant gain) and increased lung to chemoreceptor circulatory delay. Sleep-wake transitions and pharyngeal dilator muscle responses effectively raise the controller gain and therefore also contribute to total loop gain and overall instability. In some circumstances, for example apnoea of infancy and central congenital hypoventilation syndrome, central apnoeas are the consequence of ventilatory depression and defective ventilatory responses, that is low loop gain. The efficacy of available treatments for CSA can be explained in terms of their effects on loop gain, for example CPAP improves lung volume (plant gain), stimulants reduce the alveolar-inspired PCO2 difference and supplemental oxygen lowers chemosensitivity. Understanding the magnitude of loop gain and the mechanisms contributing to instability may facilitate personalized interventions for CSA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available