4.3 Article

Irreversible rapid changes of magnetic field associated with the 2012 October 23 circular near-limb X1.8 Flare

Journal

RESEARCH IN ASTRONOMY AND ASTROPHYSICS
Volume 16, Issue 6, Pages -

Publisher

NATL ASTRONOMICAL OBSERVATORIES, CHIN ACAD SCIENCES
DOI: 10.1088/1674-4527/16/6/095

Keywords

Sun: flares; Sun: magnetic field

Funding

  1. US NSF [AGS 1348513, 1408703]
  2. Directorate For Geosciences
  3. Div Atmospheric & Geospace Sciences [1408703] Funding Source: National Science Foundation
  4. Directorate For Geosciences
  5. Div Atmospheric & Geospace Sciences [1348513] Funding Source: National Science Foundation

Ask authors/readers for more resources

It has been found that photospheric magnetic fields can change in accordance with restructuring of the three-dimensional magnetic field following solar eruptions. Previous studies mainly use vector magnetic field data taken for events near the disk center. In this paper, we analyze the magnetic field evolution associated with the 2012 October 23 X1.8 flare in NOAA AR 11598 that is close to the solar limb, using both the 45 s cadence line-of-sight and 12 min cadence vector magnetograms from the Helioseismic and Magnetic Imager on board Solar Dynamics Observatory. This flare is classified as a circular-ribbon flare with spine-fan type magnetic topology containing a null point. In the line-of-sight magnetograms, there are two apparent polarity inversion lines (PILs). The PIL closer to the limb is affected more by the projection effect. Between these two PILs there lie positive polarity magnetic fields, which are surrounded by negative polarity fields outside the PILs. We find that after the flare, both the apparent limb-ward and disk-ward negative fluxes decrease, while the positive flux in-between increases. We also find that the horizontal magnetic fields have a significant increase along the disk-ward PIL, but in the surrounding area, they decrease. Synthesizing the observed field changes, we conclude that the magnetic fields collapse toward the surface above the disk-ward PIL as depicted in the coronal implosion scenario, while the peripheral field turns to a more vertical configuration after the flare. We also suggest that this event is an asymmetric circular-ribbon flare: a flux rope is likely present above the disk-ward PIL. Its eruption causes instability of the entire fan-spine structure and the implosion near that PIL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available