4.7 Article

A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems

Journal

RENEWABLE ENERGY
Volume 87, Issue -, Pages 1023-1030

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2015.09.073

Keywords

Renewable energy sources (RES); Complementary RES; Optimization; Hybrid; Small hydropower

Ask authors/readers for more resources

Key global energy, environmental and sustainability targets are closely related to the development of Renewable Energy Sources (RES). This includes reduction of Greenhouse Gas emissions and safe energy provision in a sustainable manner. The integration of RES in the energy mix needs to overcome the technical challenges that are related to grid's operation. Therefore, there is an increasing need to explore approaches where different RES will operate under a synergetic approach. A straightforward way to achieve that is by optimizing the complementarity among RES systems both over time and spatially. The present article developed a methodology that examines the degree of time complementarity between small hydropower stations (SHPS) and adjacent solar PV systems (SPVS). The methodology builds on an optimization algorithm that associates hydrological with solar irradiation information. In particularly, the algorithm examines possible alterations on the PV system installation (azimuth, tilt) that increase the complementarity, with minor compromises in the total solar energy output. The methodology has been tested in a case study and the outcome indicated that a compromise of 10% in the solar energy output (90% threshold) may result in a significant increase of the complementarity (66.4%). (C) 2015 The Authors. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available