4.8 Review

A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 66, Issue -, Pages 934-947

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2016.08.013

Keywords

Microgrid; Uncertainty Modelling; Unit commitment; Plug-in electric vehicles; Vehicle to grid; Probabilistic modelling; Stochastic modelling; Particle swarm optimization

Ask authors/readers for more resources

This paper presents a probabilistic Unit Commitment (UC) model for optimal scheduling of wind power, load forecasts and controllability of vehicles in a microgrid using a stochastic programming framework. The microgrid is made up of microturbines, wind turbine, boiler, Plug-in Electric Vehicles (PEVs), thermal storage and battery storage. The proposed model will help the power grid operators with optimal day ahead planning even with variable operating conditions in respect of load forecasts, controllability of vehicles and wind generation. A set of valid scenarios is assigned for the uncertainties of wind sources, load and PEVs and objective function in the form of expected value. The objective function is to maximize the expected total profit of the UC schedule for the set of scenarios from the viewpoint of microgrid management. The probabilistic unit commitment optimizes the objective function using Particle Swarm Optimization (PSO) algorithm. In order to verify the effectiveness of the stochastic modelling and make a comparison with a simple deterministic one, a typical microgrid is used as a case study. The results can be used to evaluate the effect of integration of PEVs on the economic operation of the microgrid. The results also confirm the necessity to consider the key uncertainties of the microgrid; otherwise the results could overly misrepresent the real world operation of the system. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available