4.8 Review

Recent developments on biofuels production from microalgae and macroalgae

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 65, Issue -, Pages 235-249

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2016.06.055

Keywords

Biodiesel; Bioethanol; Biohydrogen; Biogas; Hydrothermal liquefaction

Funding

  1. Department of Biotechnology (DBT), Government of India, New Delhi, India
  2. Danish Council for Strategic Research (DSF) for Indo-Danish project on Algal Biorefinery [09-067601]
  3. Council of Scientific and Industrial Research (CSIR), Govt. of India
  4. University Grants Commission (UGC)

Ask authors/readers for more resources

Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place, bringing together both microalgae and macroalgae on the same platform. It provides a brief overview on the mechanism of different biofuel production from algae. Factors affecting the biofuel process and the associated challenges have been highlighted alongwith analysis of techno-economic study available in literature. Undoubtly, biodiesel is the center of attraction among other biofuels. However, their routes and process need to be optimized in order to bring the minimum fuel selling price (MFSP) of biodiesel competitive. Technological challenges have not been overcome to make biofuel production process energetically and commercially viable. Macroalgae are low in lipid content. Therefore, the use of macro algae is restricted for gaseous fuels or fermentative methods of liquid biofuels production. Anaerobic digestion of algal biomass is easy and seems promising as the process is simple in terms of engineering and infrastructure requirement. Hydrogen production by microalgae through biophotolysis seems interesting as it directly converts the solar energy into hydrogen. However, the process has not been scaled-up till today. Hydrothermal liquefaction (HTL) is more promising due to handling of wet biomass at moderate temperature and pressure and conversion of whole biomass into high quality oil. However, HTL process is energy intensive. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available