4.7 Article

Lidar detection of individual tree size in tropical forests

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 183, Issue -, Pages 318-333

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2016.05.028

Keywords

Airborne lidar; 3D tropical forest structure modeling; Mean shift algorithm segmentation; Individual tree detection; Tropical tree crown clustering; Crown area; Crown volume; Carbon estimation; Aboveground biomass

Funding

  1. NASA [NNH15CO488]
  2. Oak Ridge Associated Universities

Ask authors/readers for more resources

Characterization of tropical forest trees has been limited to field-based techniques focused on measurement of diameter of the cylindrical part of the bole, with large uncertainty in measuring large trees with irregular shapes, and other size attributes such as total tree height and the crown size. Here, we introduce a methodology to decompose lidar point cloud data into 3D clusters corresponding to individual tree crowns (ITC) that enables the estimation of many biophysical variables of tropical forests such as tree height, crown area, crown volume, and tree number density. The ITC-based approach was tested using airborne high-resolution lidar data collected over the 50-ha Center for Tropical Forest Science (CTFS) plot in the Barro Colorado Island, Panama. The lack of tree height and crown size measurements in the field prohibits the direct validation of the ITC metrics. We assess the reliability of our method by comparing the aboveground biomass (AGB) estimated using ground and lidar individual tree measurements at multiple spatial scales, namely 1 ha, 2.25 ha, 4 ha, and 6.25 ha. We examined four different lidar-derived AGB models, with three based on individual tree height, crown volume, and crown area, and one with mean top canopy height (TCH) calculated at the plot level using the lidar canopy height model. Results show that the predictive power of all models based on ITC size and TCH increases with decreasing spatial resolution from 16.9% at 1 ha for the worst model to 5.0% at 6.25 ha for the best model. The TCH-based model performed slightly better than ITC-based models except at higher spatial scales (similar to 4 ha) and when errors due to edge effects associated with tree crowns were reduced. Unlike the TCH models that change regionally depending on forest type and structure allometry, the ITC-based models are derived as a function of individual tree allometry and can be extended globally to all tropical forests. The method for lidar detection of individual crown size overcome some limitations of ground-based inventories such as 1) it is able to access crowns of large trees and 2) it enables the assessment of directional changes in tree density, canopy architecture and forest dynamics over large and inaccessible areas to support robust tropical ecological studies. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available