4.7 Article

Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 183, Issue -, Pages 294-303

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2016.05.024

Keywords

Greenland Ice Sheet hydrology; Supraglacial water depth; Spectrally-based depth-retrieval models; WorldView-2 satellite; High-resolution digital elevation model (DEM)

Funding

  1. National Aeronautics and Space Administration (NASA) [NNX10AR76G]
  2. U.S. National Science Foundation (NSF) [ANT-1043681]
  3. U.S. Geological Survey [G12PC00066]

Ask authors/readers for more resources

Supraglacial meltwater lakes on the western Greenland Ice Sheet (GrIS) are critical components of its surface hydrology and surface mass balance, and they also affect its ice dynamics. Estimates of lake volume, however, are limited by the availability of in situ measurements of water depth, which in turn also limits the assessment of remotely sensed lake depths. Given the logistical difficulty of collecting physical bathymetric measurements, methods relying upon in situ data are generally restricted to small areas and thus their application to largescale studies is difficult to validate. Here, we produce and validate spaceborne estimates of supraglacial lake volumes across a relatively large area (1250 km(2)) of west Greenland's ablation region using data acquired by the WorldView-2 (WV-2) sensor, making use of both its stereo-imaging capability and its meter-scale resolution. We employ spectrally-derived depth retrieval models, which are either based on absolute reflectance (single channel model) or a ratio of spectral reflectances in two bands (dual-channel model). These models are calibrated by using WV-2 multispectral imagery acquired early in the melt season and depth measurements from a high resolution WV-2 DEM over the same lake basins when devoid of water. The calibrated models are then validated with different lakes in the area, for which we determined depths. Lake depth estimates based on measurements recorded in WV-2's blue (450-510 nm), green (510-580 nm), and red (630-690 nm) bands and dual-channel modes (blue/green, blue/red, and green/red band combinations) had near-zero bias, an average root-mean squared deviation of 0.4 m (relative to post-drainage DEM5), and an average volumetric error of <1%. The approach outlined in this study- image-based calibration of depth-retrieval models - significantly improves spaceborne supraglacial bathymetry retrievals, which are completely independent from in situ measurements. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available