4.7 Article

Soil moisture retrieval over irrigated grassland using X-band SAR data

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 176, Issue -, Pages 202-218

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2016.01.027

Keywords

grassland; TerraSAR-X; COSMO-SkyMED; neural networks; inversion; soil moisture; vegetation indices

Funding

  1. French Space Study Center (CNES, DAR TOSCA)
  2. Islamic Development Bank
  3. Investissements d'Avenir program [ANR-10-EQPX-20]

Ask authors/readers for more resources

The aim of this study was to develop an inversion approach to estimate surface soil moisture from X-band SAR data over irrigated grassland areas. This approach simulates a coupling scenario between Synthetic Aperture Radar (SAR) and optical images through the Water Cloud Model (WCM). A time series of SAR (TerraSAR-X and COSMO-SkyMed) and optical (SPOT 4/5 and LANDSAT 7/8) images were acquired over an irrigated grassland region in southeastern France. An inversion technique based on multi-layer perceptron neural networks (NNs) was used to invert the Water Cloud Model (WCM) for soil moisture estimation. Three inversion configurations based on SAR and optical images were defined: (1) HH polarization, (2) HV polarization, and (3) both HH and HV polarizations, all with one vegetation descriptor derived from optical data. The investigated vegetation descriptors were the Normalized Difference Vegetation Index NDVI, Leaf Area Index LAI, Fraction of Absorbed Photosynthetically Active Radiation FAPAR, and the Fractional vegetation COVER FCOVER. These vegetation descriptors were derived from optical images. For the three inversion configurations, the NNs were trained and validated using a noisy synthetic dataset generated by the WCM for a wide range of soil moisture and vegetation descriptor values. The trained NNs were then validated from a real dataset composed of X-band SAR backscattering coefficients and vegetation descriptor derived from optical images. The use of X-band SAR measurements in HH polarization (in addition to one vegetation descriptor derived from optical images) yields more precise results on soil moisture (My) estimates. In the case of NDVI derived from optical images as the vegetation descriptor, the Root Mean Square Error on My estimates was 3.6 Vol.% for NDVI values between 0.45 and 0.75, and 6.1 Vol.% for NDVI between 0.75 and 0.90. Similar results were obtained regardless of the other vegetation descriptor used. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available