4.7 Article

Impervious surface detection with nighttime photography from the International Space Station

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 176, Issue -, Pages 295-307

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2016.02.009

Keywords

Imperviousness; ISS; Nighttime light; Photography; OLS

Funding

  1. National Science Center of Poland under the ArtISS research project [DEC-2012/05/B/ST10/02169]

Ask authors/readers for more resources

For over two decades nighttime satellite imagery from the Operational Linescan System (OLS) has been used to detect impervious surfaces. However, OLS-based maps suffer from the sensor's coarse resolution (2.7 km/pixel), overglow, and saturation in urban areas, resulting in inaccurate estimates of the extent and degree of impervious surfaces. In order to provide more reliable estimates of impervious surface extent, we used high resolution (similar to 10 m/pixel) nighttime photography from the International Space Station (ISS). Focusing on the city of Berlin in Germany, we produced a map of the extent of impervious surfaces. Our classification was 85% accurate for both user and producer measures. Impervious surfaces omitted by ISS photography were mainly transit roads and airport runways, while green areas and water bodies within the city were falsely identified. An analysis based on ISS imagery classified 55.7% of the study area as impervious, which is only 3.9% less than ground truth (while the OLS-based estimate was 40% higher than ground truth). ISS imagery failed to provide reliable information about the degree of imperviousness for individual pixels (+/- 20% errors); nevertheless it accurately estimated the spatially-averaged degree of imperviousness for the whole study area (30.2% vs. the reference value of 30.1%). These results show that ISS photography is an important source of nighttime imagery for mapping the extent of impervious surfaces, and represents a considerable improvement over OLS capabilities. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available