4.6 Article Proceedings Paper

Structure and properties of the radiation-induced intermediates produced from HCN in noble gas matrices

Journal

RADIATION PHYSICS AND CHEMISTRY
Volume 124, Issue -, Pages 30-37

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2015.12.001

Keywords

Matrix isolation; Hydrogen cyanide; X-ray irradiation; FTIR spectroscopy; EPR

Funding

  1. Russian Science Foundation [14-13-01266] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

In this work we report the results of systematic studies on the radiation-induced transformations in HCN/Ng systems (Ng=Ne, Ar, Kr or Xe) at 7 K using a combination of FTIR and EPR spectroscopy. It was shown that HCN underwent efficient decomposition producing H atoms, CN radicals and HNC isomer. The thermally induced reactions of H atoms in different matrices result in the formation of two isomeric radicals, H2CN and trans-HCNH, the former being predominated. The temperature dependent dynamics of CN and H2CN radicals in a krypton matrix was observed by EPR spectroscopy in solid krypton. The vibrational frequencies, IR intensities and magnetic resonance parameters of H2CN and trans-HCNH radicals calculated at the CCSD(T) level are in reasonable agreement with the experimental results. It was found that HCNH radical could be effectively bleached with visible light. The comparison of experimental and computational data made it possible to assign a new vibrational band at 918 cm(-1) in an Ar matrix (and the corresponding bands in Kr and Xe) to trans-HCNH radical. In addition, HKrCN was found in the case of krypton, whereas HXeCN and HXeNC were produced in solid xenon. The reaction mechanisms and contribution of different channels are discussed. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available