4.4 Article

Changes in stress-stimulated allopregnanolone levels induced by neonatal estradiol treatment are associated with enhanced dopamine release in adult female rats: reversal by progesterone administration

Journal

PSYCHOPHARMACOLOGY
Volume 234, Issue 5, Pages 749-760

Publisher

SPRINGER
DOI: 10.1007/s00213-016-4511-7

Keywords

Neonatal estradiol; Stress; Allopregnanolone; Dopamine; Corticosterone; Female rat

Funding

  1. Italian MIUR [PRIN 2003057334]
  2. Banco di Sardegna Foundation [2012.0255]
  3. University of Cagliari

Ask authors/readers for more resources

Allopregnanolone plays a role in the stress response and homeostasis. Alterations in the estrogen milieu during the perinatal period influence brain development in a manner that persists into adulthood. Accordingly, we showed that a single administration of estradiol benzoate (EB) on the day of birth decreases brain allopregnanolone concentrations in adult female rats. We examined whether the persistent decrease in allopregnanolone concentrations, induced by neonatal EB treatment, might affect sensitivity to stress during adulthood. Female rats were treated with 10 mu g of EB or vehicle on the day of birth. During adulthood, the response to acute foot shock stress was assessed by measuring changes in brain allopregnanolone and corticosterone levels, as well as extracellular dopamine output in the medial prefrontal cortex (mPFC). Neonatal EB treatment enhanced stress-stimulated allopregnanolone levels in the hypothalamus, as well as extracellular dopamine output in the mPFC; this latest effect is reverted by subchronic progesterone treatment. By contrast, neonatal EB treatment did not alter stress-induced corticosterone levels, sensitivity to hypothalamic-pituitary-adrenal (HPA) axis negative feedback, or abundance of glucocorticoid and mineralocorticoid receptors. The persistent decrease in brain allopregnanolone concentrations, induced by neonatal EB treatment, enhances stress-stimulated allopregnanolone levels and extracellular dopamine output during adulthood. These effects are not associated to an impairment in HPA axis activity. Heightened sensitivity to stress is a risk factor for several neuropsychiatric disorders; these results suggest that exposure to estrogen during development may predispose individuals to such disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available