4.5 Article

Proteomics goes forensic: Detection and mapping of blood signatures in fingermarks

Journal

PROTEOMICS
Volume 16, Issue 11-12, Pages 1707-1717

Publisher

WILEY
DOI: 10.1002/pmic.201500544

Keywords

Blood; Forensics; MALDI-MSI; Proteomics; Shotgun; Technology

Funding

  1. UK Home Office's CAST
  2. Biomolecular Research Centre at Sheffield Hallam University

Ask authors/readers for more resources

A bottom up in situ proteomic method has been developed enabling the mapping of multiple blood signatures on the intact ridges of blood fingermarks by Matrix Assisted Laser Desorption Mass Spectrometry Imaging (MALDI-MSI). This method, at a proof of concept stage, builds upon recently published work demonstrating the opportunity to profile and identify multiple blood signatures in bloodstains via a bottom up proteomic approach. The present protocol addresses the limitation of the previously developed profiling method with respect to destructivity; destructivity should be avoided for evidence such as blood fingermarks, where the ridge detail must be preserved in order to provide the associative link between the biometric information and the events of bloodshed. Using a blood mark reference model, trypsin concentration and spraying conditions have been optimised within the technical constraints of the depositor eventually employed; the application of MALDI-MSI and Ion Mobility MS have enabled the detection, confirmation and visualisation of blood signatures directly onto the ridge pattern. These results are to be considered a first insight into a method eventually informing investigations (and judicial debates) of violent crimes in which the reliable and non-destructive detection and mapping of blood in fingermarks is paramount to reconstruct the events of bloodshed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available