4.7 Article

Self-crosslinking acrylic latexes with copolymerized flame retardant based on halogenophosphazene derivative

Journal

PROGRESS IN ORGANIC COATINGS
Volume 101, Issue -, Pages 322-330

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.porgcoat.2016.09.007

Keywords

Emulsion polymerisation; Core-shell latex; Diacetone acrylamide; Flame retardant; Phosphazene; Cone calorimeter

Funding

  1. Technological Agency of Czech Republic [TA02000011]

Ask authors/readers for more resources

In this study the synthesis of a novel flame retardant based on halogenophosphazene derivative and its application in waterborne coatings based on self-crosslinking latexes was investigated. Hexaallylamino-cyclo-triphosphazene was synthesized by nucleophilic substitution of hexachloro-cyclotriphosphazene with allyl amine. Latexes of functionalized core-shell particles bearing in the structure hexaallylamino-cyclo-triphosphazene molecules were prepared by the semi-continuous non-seeded emulsion polymerization of methyl methacrylate, butyl acrylate and methacrylic acid as main monomers. For interfacial crosslinking, diacetone acrylamide was copolymerized into the shell layer of latex particles to provide sites for subsequent reaction with adipic acid dihydrazide. The incorporation hexaallylamino-cyclo-triphosphazene did not affect transparency, flexibility, toughness and adhesive properties of resulting coatings. Moreover, the presence of the novel flame retardant decreased water sensitivity and increased the flame stability of coatings in terms of reduced total heat release, decreased amount of released smoke and drop in maximum average rate of heat emission which indicates a slower flame spread during the material combustion. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available