4.6 Review

Yield and failure criteria for composite materials under static and dynamic loading

Journal

PROGRESS IN AEROSPACE SCIENCES
Volume 81, Issue -, Pages 18-25

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.paerosci.2015.11.003

Keywords

Mechanical characterization; Dynamic testing; Failure criteria; Failure envelopes; Strain rate effects

Funding

  1. Office of Naval Research (ONR) [N00014-12-1-0228]

Ask authors/readers for more resources

To facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of structural laminates based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new failure theory, the Northwestern (NU-Daniel) theory, has been proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is primarily applicable to matrix-dominated interfiber/interlaminar failures. It is based on micromechanical failure mechanisms but is expressed in terms of easily measured macroscopic lamina stiffness and strength properties. It is presented in the form of a master failure envelope incorporating strain rate effects. The theory was further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive failure of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available