4.8 Article

pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1525145113

Keywords

carbon fixation; RuBisCO; cyanobacteria; inorganic carbon; systems biology

Funding

  1. National Science Foundation Graduate Research Fellowship
  2. European Research Council [NOVCARBFIX 646827]
  3. US Department of Energy [DE-SC0006394]
  4. U.S. Department of Energy (DOE) [DE-SC0006394] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Many carbon-fixing bacteria rely on a CO2 concentrating mechanism (CCM) to elevate the CO2 concentration around the carboxylating enzyme ribulose bisphosphate carboxylase/ oxygenase (RuBisCO). The CCM is postulated to simultaneously enhance the rate of carboxylation and minimize oxygenation, a competitive reaction with O-2 also catalyzed by RuBisCO. To achieve this effect, the CCM combines two features: active transport of inorganic carbon into the cell and colocalization of carbonic anhydrase and RuBisCO inside proteinaceous microcompartments called carboxy-somes. Understanding the significance of the various CCM components requires reconciling biochemical intuition with a quantitative description of the system. To this end, we have developed a mathematical model of the CCM to analyze its energetic costs and the inherent intertwining of physiology and pH. We find that intracellular pH greatly affects the cost of inorganic carbon accumulation. At low pH the inorganic carbon pool contains more of the highly cell-permeable H2CO3, necessitating a substantial expenditure of energy on transport to maintain internal inorganic carbon levels. An intracellular pH approximate to 8 reduces leakage, making the CCM significantly more energetically efficient. This pH prediction coincides well with our measurement of intracellular pH in a model cyanobacterium. We also demonstrate that CO2 retention in the carboxysome is necessary, whereas selective uptake of HCO3- into the carboxysome would not appreciably enhance energetic efficiency. Altogether, integration of pH produces a model that is quantitatively consistent with cyanobacterial physiology, emphasizing that pH cannot be neglected when describing biological systems interacting with inorganic carbon pools.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available