4.8 Article

Observing the formation of ice and organic crystals in active sites

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1617717114

Keywords

nucleation; confinement; topography; pores; active sites

Funding

  1. Leverhulme Trust [RPG-2014-306]
  2. Engineering and Physical Sciences Research Council [EP/M003027/1, EP/N002423/1]
  3. EPSRC [EP/N002423/1, EP/M003027/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/M003027/1, EP/N002423/1] Funding Source: researchfish

Ask authors/readers for more resources

Heterogeneous nucleation is vital to a wide range of areas as diverse as ice nucleation on atmospheric aerosols and the fabrication of high-performance thin films. There is excellent evidence that surface topography is a key factor in directing crystallization in real systems; however, the mechanisms by which nanoscale pits and pores promote nucleation remain unclear. Here, we use natural cleavage defects on Muscovite mica to investigate the activity of topographical features in the nucleation from vapor of ice and various organic crystals. Direct observation of crystallization within surface pockets using optical microscopy and also interferometry demonstrates that these sharply acute features provide extremely effective nucleation sites and allows us to determine the mechanism by which this occurs. A confined phase is first seen to form along the apex of the wedge and then grows out of the pocket opening to generate a bulk crystal after a threshold saturation has been achieved. Ice nucleation proceeds in a comparable manner, although our resolution is insufficient to directly observe a condensate before the growth of a bulk crystal. These results provide insight into the mechanism of crystal deposition from vapor on real surfaces, where this will ultimately enable us to use topography to control crystal deposition on surfaces. They are also particularly relevant to our understanding of processes such as cirrus cloud formation, where such topographical features are likely candidates for the active sites that make clay particles effective nucleants for ice in the atmosphere.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available