4.8 Article

Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1602566113

Keywords

lytic polysaccharide monooxygenase; LPMO; cellulose; xyloglucan; cellobiose dehydrogenase

Funding

  1. Norwegian University of Science and Technology
  2. MARPOL project
  3. FRINAT project
  4. Norwegian NMR Platform from the Research Council of Norway [221576, 214613, 226244]
  5. Obel Foundation
  6. SparNord Foundation
  7. Carlsberg Foundation
  8. European Commission through the INDOX project [FP7-KBBE-2013-7-613549]

Ask authors/readers for more resources

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that catalyze oxidative cleavage of glycosidic bonds using molecular oxygen and an external electron donor. We have used NMR and isothermal titration calorimetry (ITC) to study the interactions of a broad-specificity fungal LPMO, NcLPMO9C, with various substrates and with cellobiose dehydrogenase (CDH), a known natural supplier of electrons. The NMR studies revealed interactions with cellohexaose that center around the copper site. NMR studies with xyloglucans, i. e., branched beta-glucans, showed an extended binding surface compared with cellohexaose, whereas ITC experiments showed slightly higher affinity and a different thermodynamic signature of binding. The ITC data also showed that although the copper ion alone hardly contributes to affinity, substrate binding is enhanced for metal-loaded enzymes that are supplied with cyanide, a mimic of O-2(-). Studies with CDH and its isolated heme b cytochrome domain unambiguously showed that the cytochrome domain of CDH interacts with the copper site of the LPMO and that substrate binding precludes interaction with CDH. Apart from providing insights into enzyme-substrate interactions in LPMOs, the present observations shed new light on possible mechanisms for electron supply during LPMO action.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available