4.5 Article

Employing severe plastic deformation to the processing of electrical discharge machining electrodes

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2016.05.012

Keywords

Electrical discharge machining; Equal channel angular pressing; Electrode wear; Geometrical accuracy; Volumetric overcut; Crack density

Funding

  1. Ministry of Higher Education, Malaysia, with high impact research (HIR) grant [UM.C/625/1/HIR/MOE/ENG/33]
  2. University of Malaya research grant (UMRG) [RP021C-13AET]

Ask authors/readers for more resources

The tool electrode has a significant role in electrical discharge machining (EDM) performance, as it affects machining efficiency, surface quality and the geometrical accuracy of the machined component. This study presents a new approach for developing a pure copper electrode using severe plastic deformation (SPD) to enhance the machining characteristics during EDM. Equal channel angular pressing (ECAP) is selected because it is the most successful SPD method of processing bulk materials. Finite element analysis, microstructural assessment as well as nanoindentation tests are carried out to determine the behavior of pure copper after one and two ECAP passes. The effectiveness of EDM when using ECAP-treated electrodes is evaluated by introducing new techniques of measuring the volumetric overcut (VOC) and corner sharpness. In addition, tool wear rate (TWR), material removal rate (MRR), electrode wear ratio, surface roughness, surface crack density and the critical crack zone are studied. The results emphasize that an electrode subjected to one pass of ECAP can enhance the workpiece accuracy by decreasing the VOC and increasing corner sharpness by 13 and 66%, respectively. It is also revealed that the nanohardness enhancement following ECAP leads to lower TWR and electrode wear ratio. An investigation of the surface characteristics indicates a thinner recast layer is achieved when using one ECAP pass-treated electrode, which leads to 26% lower surface crack density. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available