4.7 Article

Characterizing the constitutive response and energy absorption of rigid polymeric foams subjected to intermediate-velocity impact

Journal

POLYMER TESTING
Volume 54, Issue -, Pages 48-58

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymertesting.2016.06.023

Keywords

Polymeric foam; Direct impact; Digital image correlation; Inertia; Energy absorption

Funding

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

As an optimum energy-absorbing material system, polymeric foams are needed to dissipate the kinetic energy of an impact, while maintaining the impact force transferred to the protected object at a low level. Therefore, it is crucial to accurately characterize the load bearing and energy dissipation performance of foams at high strain rate loading conditions. There are certain challenges faced in the accurate measurement of the deformation response of foams due to their low mechanical impedance. In the present work, a non-parametric method is successfully implemented to enable the accurate assessment of the compressive constitutive response of rigid polymeric foams subjected to impact loading conditions. The method is based on stereovision high speed photography in conjunction with 3D digital image correlation, and allows for accurate evaluation of inertia stresses developed within the specimen during deformation time. Full-field distributions of stress, strain and strain rate are used to extract the local constitutive response of the material at any given location along the specimen axis. In addition, the effective energy absorbed by the material is calculated. Finally, results obtained from the proposed non parametric analysis are compared with data obtained from conventional test procedures. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available