4.6 Article

Long Noncoding RNA miR210HG as a Potential Biomarker for the Diagnosis of Glioma

Journal

PLOS ONE
Volume 11, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0160451

Keywords

-

Funding

  1. National Natural Science Foundation of China [81502163]

Ask authors/readers for more resources

Background Glioma remains a diagnostic challenge because of its variable clinical presentation and a lack of reliable screening tools. Long noncoding RNAs (lncRNAs) regulate gene function in a wide range of pathophysiological processes and are therefore emerging biomarkers for prostate cancer, hepatic cancer, and other tumor diseases. However, the effective use of lncRNAs as biomarkers for the diagnosis of glioma remains unproven. Methods This study included 42 glioma patients and 10 healthy controls. lncRNA and mRNA microarray chips were used to identify dysregulated lncRNAs in tumor tissue and tumor-adjacent normal tissue, and SYBR Green-based miRNA quantitative real-time reverse transcription polymerase chain reactions were used to validate upregulated lncRNAs. A receiver operating characteristic curve analysis was conducted to evaluate the diagnostic accuracy of the lncRNA identified as the candidate biomarker. Results miR210HG levels were significantly higher in tumor tissue than in tumor-adjacent normal tissue in participating glioma patients. Serum miR210HG levels were also significantly higher in glioma patients than in healthy controls. The receiver operating characteristic curve showed that serum miR210HG was a specific diagnostic predictor of acute pulmonary embolism with an area under the curve of 0.8323 (95% confidence interval, 0.7347 to 0.9299, p < 0.001). Conclusion Our findings indicate that miR210HG could be an important biomarker for the diagnosis of glioma, and, as such, large-scale investigations are urgently needed to pave the way from basic research to clinical use.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available