4.6 Article

Zero-Heat-Flux Thermometry for Non-Invasive Measurement of Core Body Temperature in Pigs

Journal

PLOS ONE
Volume 11, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0150759

Keywords

-

Ask authors/readers for more resources

Hypothermia is a severe, unpleasant side effect during general anesthesia. Thus, temperature surveillance is a prerequisite in general anesthesia settings during experimental surgeries. The gold standard to measure the core body temperature (T-core) is placement of a Swan-Ganz catheter in the pulmonary artery, which is a highly invasive procedure. Therefore, T-core is commonly examined in the urine bladder and rectum. However, these procedures are known for their inaccuracy and delayed record of temperatures. Zero-heat-flux (ZHF) thermometry is an alternative, non-invasive method quantifying T-core in human patients by applying a thermosensoric patch to the lateral forehead. Since the porcine cranial anatomy is different to the human's, the optimal location of the patch remains unclear to date. The aim was to compare three different patch locations of ZHF thermometry in a porcine hypothermia model. Hypothermia (33.0 degrees C T-core) was conducted in 11 anesthetized female pigs (26-30kg). T-core was measured continuously by an invasive Swan-Ganz catheter in the pulmonary artery (T-pulm). A ZHF thermometry device was mounted on three different defined locations. The smallest average difference between T-pulm and T-ZHF during stable temperatures was 0.21 +/- 0.16 degrees C at location A, where the patch was placed directly behind the eye. Also during rapidly changing temperatures location A showed the smallest bias with 0.48 +/- 0.29 degrees C. Location A provided the most reliable data for T-core. Therefore, the ZHF thermometry patch should be placed directly behind the left temporal corner of the eye to provide a non-invasive method for accurate measurement of T-core in pigs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available