4.7 Article

Naturally occurring high oleic acid cottonseed oil: identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desaturase-2

Journal

PLANTA
Volume 245, Issue 3, Pages 611-622

Publisher

SPRINGER
DOI: 10.1007/s00425-016-2633-0

Keywords

Cottonseed; Fatty acid desaturase; Oleic acid; Linoleic acid

Categories

Funding

  1. U.S. Department of Agriculture, Agricultural Research Service [6054-41000-102-00D, 3091-21000-037-00D, 6054-42000-025-00-D]

Ask authors/readers for more resources

Some naturally occurring cotton accessions contain commercially attractive seed oil fatty acid profiles. The likely causal factor for a high-oleate trait in pima cotton ( Gossypium barbadense ) accession GB-713 is described here. Vegetable oils are broadly used in the manufacture of many human and animal nutritional products, and in various industrial applications. Along with other well-known edible plant oils from soybean, corn, and canola, cottonseed oil is a valuable commodity. Cottonseed oil is a co-product derived from the processing of cottonseed fiber. In the past, it was used extensively in a variety of food applications. However, cottonseed oil has lost market share in recent years due to less than optimal ratios of the constituent fatty acids found in either traditional or partially hydrogenated oil. Increased awareness of the negative health consequences of dietary trans-fats, along with the public wariness associated with genetically modified organisms has created high demand for naturally occurring oil with high monounsaturate/polyunsaturate ratios. Here, we report the discovery of multiple exotic accessions of pima cotton that contain elevated seed oil oleate content. The genome of one such accession was sequenced, and a mutant candidate fatty acid desaturase-2 (FAD2-1D) gene was identified. The mutant protein produced significantly less linoleic acid in infiltrated Arabidopsis leaf assays, compared to a repaired version of the same enzyme. Identification of this gene provides a valuable resource. Development of markers associated with this mutant locus will be very useful in efforts to breed the high-oleate trait into agronomic fiber accessions of upland cotton.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available