4.7 Article

Asada-Halliwell pathway maintains redox status in Dioscorea alata tuber which helps in germination

Journal

PLANT SCIENCE
Volume 250, Issue -, Pages 20-29

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.plantsci.2016.05.013

Keywords

Reactive oxygen species; Asada-Halliwell cycle; Nitric oxide; S-nitrosothiol; Mature & germinating tuber

Funding

  1. Department of Science & Technology & University Grants Commission Government of India [Dean (R)/2010/1142, 43-98/2014(SR)]

Ask authors/readers for more resources

Reactive Oxygen Species (ROS) are important regulatory molecules governing physiological processes. In the present study a biochemical and proteome level comparison of two contrasting growth stages of Dioscorea alata tuber namely germinating and mature tuber was performed in order to understand the tuber physiology and biochemistry. Existence of all the component enzymes [APx (ascorbate peroxidase), GR (glutathione reductase), DHAR (dehydroascorbate reductase), MDHAR (mono-dehydroascorbate reductase)] and major products [ascorbate (ASC) and glutathione (GSH)] of the cycle showed an operational Asada-Halliwell cycle in the tuber. A 2.65 fold increase in ASC content & a 3.8 fold increase in GR activity fortified the redox milieu during germination. In contrast a 5 fold higher H2O2 content (due to 3.08 fold lower APx activity) and accumulation of reactive nitrogen species (RNS) such as nitric oxide (NO, 2.4-fold) and S-nitrosothiol (SNO, 2.08 fold) contributed to overall oxidative conditions in the mature tuber. The carbonic anhydrase (CA, 7.5 fold), DHAR (5.31 fold) and MDHAR (7 fold) activities were higher in the germinating tuber in comparison with the mature tuber. GSNO negatively regulated the CA (3.6 & 3.95 fold), MDHAR (7.5 & 1.5 fold) and APx (2.3 & 1.81 fold) while another NO donor, CysNO negatively regulated the DHAR (2.24 & 1.32 fold) activity in the mature and germinating stages respectively indicating again that the lesser inhibition by NO (via nitrosylation) may be because of overall reducing environment in the germinating tuber. Increased SNO leading to S-nitrosylation of dioscorin was confirmed by Biotin switch assay. This is the first report showing dioscorin nitrosylation. The present analysis showed differential redox regulation and also suggests the physiological relevance of CA, DHAR, MDHAR, APx & GR in tuber germination for the first time. These enzymes may be used as potential markers of tuber germination in future. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available