4.7 Article

Anatomical and biochemical analysis reveal the role of anthocyanins in flower coloration of herbaceous peony

Journal

PLANT PHYSIOLOGY AND BIOCHEMISTRY
Volume 102, Issue -, Pages 97-106

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.plaphy.2016.02.023

Keywords

Herbaceous peony; Anthocyanins; Red colour; Anatomical analysis

Categories

Funding

  1. Natural Science Foundation of China [31372097, 31400592]
  2. Major Project of College Natural Science Research of Jiangsu Province [13KJA210005]
  3. Opening Project of Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement [2014014]
  4. Priority Academic Program Development from Jiangsu Government

Ask authors/readers for more resources

Herbaceous peony (Paeonia lactiflora Pall.) is particularly appreciated because of its elegant and gorgeous flower color, but little is known about the underlying mechanisms of flower coloration. In this study, three P. lactiflora cultivars 'Xuefeng', 'Fenyulou' and 'Dahonglou' with white, pink and red flower were selected as the materials. Their anatomical structures, cell sap pH and metal elements were investigated, and the colored pigment mainly distributed in palisade mesophyll was only found in 'Fenyulou' and 'Dahonglou', and their shape of epidermal cells, cell sap pH and metal elements were not the key factors deciding phenotype color. Moreover, the qualitative and quantitative analysis of flavonoids were performed, their total anthocyanin, anthoxanthin and flavonoid contents were decreased during flower development, and only anthocyanin content in 'Dahonglou' was always higher than that in 'Xuefeng' and 'Fenyulou'. Subsequently, three anthocyanin compositions were found, and peonidin 3,5-di-O-glucoside (Pn3G5G) was identified as the main anthocyanin composition. In addition, the full-length of flavonol synthase gene (FLS) was isolated with the GenBank accession number KM259902, and the expression patterns of eight flavonoid biosynthetic genes showed that only PlDFR and PlANS basically had the highest levels in 'Dahonglou' and the lowest levels in 'Xuefeng', and they basically displayed a descended trend during flower development especially PlDFR, suggesting that these two genes might play a key role in the anthocyanin biosynthesis which resulted in the shift from white to pink and red in flowers. These results would contribute to understand the underlying molecular mechanisms of flower coloration in P. lactiflora. (C) 2016 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available