4.8 Article

The Heat Stress Factor HSFA6b Connects ABA Signaling and ABA-Mediated Heat Responses

Journal

PLANT PHYSIOLOGY
Volume 172, Issue 2, Pages 1182-1199

Publisher

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.16.00860

Keywords

-

Categories

Funding

  1. National Taiwan University [103R892003, 104R892003, 105R89203]
  2. Ministry of Science and Technology, Taiwan [102-2311-B-002-031, 103-2311-B-002-008, 104-2311-B-002-007, 102-2811-B-002-132, 103-2811-B-002-047, 104-2811-B-002-075]

Ask authors/readers for more resources

Heat stress response (HSR) is a conserved mechanism developed to increase the expression of heat shock proteins (HSPs) via a heat shock factor (HSF)-dependent mechanism. Signaling by the stress phytohormone abscisic acid (ABA) is involved in acquired thermotolerance as well. Analysis of Arabidopsis (Arabidopsis thaliana) microarray databases revealed that the expression of HSFA6b, a class A HSF, extensively increased with salinity, osmotic, and cold stresses, but not heat. Here, we show that HSFA6b plays a pivotal role in the response to ABA and in thermotolerance. Salt-inducible HSFA6b expression was down-regulated in ABA-insensitive and -deficient mutants; however, exogenous ABA application restored expression in ABA-deficient, but not - insensitive plants. Thus, ABA signaling is required for proper HSFA6b expression. A transcriptional activation assay of protoplasts revealed that ABA treatment and coexpression of an ABA signaling master effector, ABA-RESPONSIVE ELEMENT-BINDING PROTEIN1, could activate the HSFA6b promoter. In addition, HSFA6b directly bound to the promoter of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2A and enhanced its expression. Analysis of ABA responses in seed germination, cotyledon greening, and root growth as well as salt and drought tolerance in HSFA6b-null, overexpression, and dominant negative mutants revealed that HSFA6b is a positive regulator participating in ABA-mediated salt and drought resistance. Thermoprotection tests showed that HSFA6b was required for thermotolerance acquisition. Our study reveals a network in which HSFA6b operates as a downstream regulator of the ABA-mediated stress response and is required for heat stress resistance. This new ABA-signaling pathway is integrated into the complex HSR network in planta.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available