4.7 Article

Mutation of Rice Early Flowering3.1 (OsELF3.1) delays leaf senescence in rice

Journal

PLANT MOLECULAR BIOLOGY
Volume 92, Issue 1-2, Pages 223-234

Publisher

SPRINGER
DOI: 10.1007/s11103-016-0507-2

Keywords

Rice; Leaf senescence; OsELF3.1; Transcriptional regulation; Arabidopsis ELF3

Funding

  1. Cooperative Research Program for Agriculture Science & Technology Development, Rural Development Administration, Republic of Korea [PJ011063]
  2. National Research Foundation of Korea [22A20130012530] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

In Arabidopsis, EARLY FLOWERING3 (ELF3) has pivotal roles in controlling circadian rhythm and photoperiodic flowering. In addition, ELF3 negatively regulates leaf senescence by repressing the transcription of PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PHYTOCHROME-INTERACTING FACTOR5 (PIF5); elf3 mutants senesce earlier and ELF3-overexpressing (ELF3-OX) plants senesce later than wild type (WT). Here, we show that in contrast to Arabidopsis ELF3, which represses senescence, the rice homolog OsELF3.1 promotes leaf senescence; oself3.1 mutants showed delayed senescence and OsELF3.1-OX plants senesced earlier under both dark-induced and natural senescence conditions. Microarray analysis revealed that in the senescing leaves, a number of senescence-associated genes, phytohormone-related genes, and NAC and WRKY family genes (OsNAP, ONAC106, and OsWRKY42) were differentially expressed in oself3.1 mutants compared with WT. Interestingly, we found that Arabidopsis plants overexpressing OsELF3.1 show delayed leaf senescence, produce short petioles, and flower late in long days, just like Arabidopsis ELF3-OX plants. This demonstrates that the regulatory functions of ELF3 and OsELF3.1 are conserved between Arabidopsis and rice, but the downstream regulatory cascades have opposite effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available