4.7 Article

Towards predicting the stability of protein-stabilized emulsions

Journal

ADVANCES IN COLLOID AND INTERFACE SCIENCE
Volume 219, Issue -, Pages 1-9

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cis.2015.01.008

Keywords

Coalescence; Flocculation; Model; Adsorption rate; Adsorbed amount; Surface coverage

Ask authors/readers for more resources

The protein concentration is known to determine the stability against coalescence during formation of emulsions. Recently, it was observed that the protein concentration also influences the stability of formed emulsions against flocculation as a result of changes in the ionic strength. In both cases, the stability was postulated to be the result of a complete (i.e. saturated) coverage of the interface. By combining the current views on emulsion stability against coalescence and flocculation with new experimental data, art empiric model is established to predict emulsion stability based on protein molecular properties such as exposed hydrophobicity and charge. It was shown that besides protein concentration, the adsorbed layer (i.e. maximum adsorbed amount and interfacial area) dominates emulsion stability against coalescence and flocculation. Surprisingly, the emulsion stability was also affected by the adsorption rate. From these observations, it was concluded that a completely covered interface indeed ensures the stability of an emulsion against coalescence and flocculation. The contribution of adsorption rate and adsorbed amount on the stability of emulsions was combined in a surface coverage model. For this model, the adsorbed amount was predicted from the protein radius, surface charge and ionic strength. Moreover, the adsorption rate, which depends on the protein charge and exposed hydrophobicity, was approximated by the relative exposed hydrophobicity (Q(H)). The model in the current state already showed good correspondence with the experimental data, and was furthermore shown to be applicable to describe data obtained from literature. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available