4.7 Article

Vacant urban lot soils and their potential to support ecosystem services

Journal

PLANT AND SOIL
Volume 413, Issue 1-2, Pages 45-57

Publisher

SPRINGER
DOI: 10.1007/s11104-016-2874-5

Keywords

Cleveland; Detroit; Ecosystem services; Vacant lots; Shrinking cities

Funding

  1. Oak Ridge Institute for Science and Education through the US DOE
  2. US EPA

Ask authors/readers for more resources

Urban soils are the basis of many ecosystem services in cities. Here, we examine formerly residential vacant lot soils in Cleveland, Ohio and Detroit, Michigan, USA for their potential to provide multiple ecosystem services. We examine two key contrasts: 1) differences between cities and 2) differences within vacant lots created during demolition, specifically pre-existing (i.e., prior to demolition) soils outside of the building footprint and fill soils added within the former building's footprint. Deep soil cores were collected from vacant lots in Cleveland and Detroit. Soil properties that are proxies for three ecosystem services were measured: hydraulic conductivity for stormwater retention, topsoil depth and soil nitrogen (N) level for support for plant growth, and soil carbon (C) content for C storage. Both city and soil group contrasts created distinct ecosystem service provisioning based on proxy measures. Cleveland soils had greater hydraulic conductivity and greater soil C and N levels but thinner topsoil layers than Detroit. Within vacant lots of both cities, pre-existing soils had greater soil C and N levels, but lower hydraulic conductivity values than fill soils. Soil properties of vacant lots were generally suitable for providing multiple ecosystem services. City-level differences in soil properties created differences in ecosystem service potential between cities and these differences were evident in pre-existing and fill soils. When comparing between cities, though, fill soils were more similar than pre-existing soils indicating some homogenization of ecosystem service potential with greater redistribution of soil.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available