4.7 Article

Natural variability in acyl moieties of sugar esters produced by certain tobacco and other Solanaceae species

Journal

PHYTOCHEMISTRY
Volume 130, Issue -, Pages 218-227

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2016.05.008

Keywords

Nicotiana species; Petunia hybrids; Solanaceae; Glandular trichomes; Natural variability; Sugar esters; Acyl groups

Funding

  1. Kentucky Tobacco Research and Development Center (University of Kentucky), Lexington, KY, USA

Ask authors/readers for more resources

A unique feature of glandular trichomes of plants in the botanical family Solanaceae is that they produce sugar esters (SE), chemicals that have been shown to possess insecticidal, antifungal, and antibacterial properties. Sugar esters of tobacco (Nicotiana tabacum) provide pest resistance, and are important flavor precursors in oriental tobacco cultivars. Acyl moieties of SEs in Nicotiana spp., petunia, and tomato are shown to vary with respect to carbon length and isomer structure (2-12 carbon chain length; anteiso-, iso-, and straight-chain). Sugar esters and their acyl groups could serve as a model to explore the basis of phenotypic diversity and adaptation to natural and agricultural environments. However, information on the diversity of acyl composition among species, cultivars, and accessions is lacking. Herein, described is the analysis of SE acyl groups found in 21 accessions of Nicotiana obtusifolia (desert tobacco), six of Nicotiana occidentalis subsp. hesperis, three of Nicotiana alata, two of N. occidentalis, four modern tobacco cultivars, five petunia hybrids, and one accession each of a primitive potato (Solanum berthaultii) and tomato (Solanum pennellii). A total of 20 different acyl groups was observed that were represented differently among cultivars, species, and accessions. In Nicotiana species, acetate and iso- and anteiso-branched acids prevailed. Straight-chain groups (2-8 carbons) were prominent in petunias, while octanoic acid was prominent in N. alata and N. x sanderae. Two unexpected acyl groups, 8-methyl nonanoate and decanoate were found in N. occidentalis subsp. hesperis. Longer chain groups were found in the petunia, tomato, and potato species studied. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available