4.7 Article

Three-dimensional interaction of a finite-span synthetic jet in a crossflow

Journal

PHYSICS OF FLUIDS
Volume 28, Issue 3, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4943493

Keywords

-

Funding

  1. Boeing Company

Ask authors/readers for more resources

The formation and evolution of flow structures due to the interaction of a finite-span synthetic jet with a zero-pressure gradient laminar boundary layer were experimentally investigated using stereoscopic particle image velocimetry. A synthetic jet with three orifice aspect ratios of AR = 6, 12, and 18 was issued into a free-stream velocity of U-infinity = 10 m/s (Re-delta = 2000) at blowing ratios of C-b = 0.5-1.5. The interaction was found to be associated with two sets of flow structures: (1) a recirculation region downstream of the orifice due to virtual blockage, and (2) a steady streamwise vortex pair farther downstream. These two flow structures were characterized in detail. Tube-like velocity deficits in the free-stream were evident, as well as regions of increased velocity within the boundary layer. Reducing the aspect ratio of the orifice decreased the spacing of the edgewise vortices (generated due to the finite span of the orifice) as well as reducing the virtual blockage of the jet. A control volume analysis of the fluid streamwise momentum indicates that there is a momentum deficit just downstream of the jet orifice and the change in streamwise momentum is proportionally similar for all cases. (C) 2016 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available