4.7 Article

Impact of orifice orientation on a finite-span synthetic jet interaction with a crossflow

Journal

PHYSICS OF FLUIDS
Volume 28, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4943520

Keywords

-

Ask authors/readers for more resources

The formation and evolution of flow structures associated with a finite-span synthetic jet issued into a zero-pressure gradient boundary layer were investigated experimentally using stereoscopic particle image velocimetry. A synthetic jet with an aspect ratio of AR = 18 was mounted on a flat plate and its interaction with a free stream, having a velocity of U-infinity = 10 m/s (Re-delta = 2000) at momentum coefficients of C-mu = 0.08, 0.33, and 0.75, was studied. The effect of the orifice pitch (alpha = 20 degrees-90 degrees) and skew (beta= 0 degrees-90 degrees) angles on vortex formation as well as the global impact of the synthetic jet on the flow field was explored in detail. It was found that the orifice orientation had a significant impact on the steady and unsteady flow structures. Different orifice skew and pitch angles could result in several types of vortical structures downstream, including: no coherent vortex structure, a single (positive or negative) strong vortex, or a symmetric vortex pair. In all cases, the velocity near the wall was increased; however, cases with higher blockage (i.e., more wall-normal, transverse orifice) resulted in a strong velocity deficit in the free stream where orifices with lower pitch angles yielded in an increase in velocity throughout. The analysis is concluded with a summary of quantitative metrics that allude to flow control effectiveness. (C) 2016 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available