4.6 Article

Optimized MLAA for quantitative non-TOF PET/MR of the brain

Journal

PHYSICS IN MEDICINE AND BIOLOGY
Volume 61, Issue 24, Pages 8854-8874

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6560/61/24/8854

Keywords

PET; MRI; attenuation correction; joint activity and attenuation estimation; maximum likelihood

Ask authors/readers for more resources

For quantitative tracer distribution in positron emission tomography, attenuation correction is essential. In a hybrid PET/CT system the CT images serve as a basis for generation of the attenuation map, but in PET/MR, the MR images do not have a similarly simple relationship with the attenuation map. Hence attenuation correction in PET/MR systems is more challenging. Typically either of two MR sequences are used: the Dixon or the ultra-short time echo (UTE) techniques. However these sequences have some well-known limitations. In this study, a reconstruction technique based on a modified and optimized non-TOF MLAA is proposed for PET/MR brain imaging. The idea is to tune the parameters of the MLTR applying some information from an attenuation image computed from the UTE sequences and a T1w MR image. In this MLTR algorithm, an alpha(j) parameter is introduced and optimized in order to drive the algorithm to a final attenuation map most consistent with the emission data. Because the non-TOF MLAA is used, a technique to reduce the cross-talk effect is proposed. In this study, the proposed algorithm is compared to the common reconstruction methods such as OSEM using a CT attenuation map, considered as the reference, and OSEM using the Dixon and UTE attenuation maps. To show the robustness and the reproducibility of the proposed algorithm, a set of 204 [F-18]FDG patients, 35 [C-11]PiB patients and 1 [F-18]FET patient are used. The results show that by choosing an optimized value of alpha(j) in MLTR, the proposed algorithm improves the results compared to the standard MR-based attenuation correction methods (i.e. OSEM using the Dixon or the UTE attenuation maps), and the cross-talk and the scale problem are limited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available