4.8 Article

Chromatic Aberration Correction for Atomic Resolution TEM Imaging from 20 to 80 kV

Journal

PHYSICAL REVIEW LETTERS
Volume 117, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.117.076101

Keywords

-

Funding

  1. German Research Foundation (DFG)
  2. Ministry of Science, Research and the Arts (MWK) of the federal state of Baden-Wurttemberg, Germany

Ask authors/readers for more resources

Atomic resolution in transmission electron microscopy of thin and light-atom materials requires a rigorous reduction of the beam energy to reduce knockon damage. However, at the same time, the chromatic aberration deteriorates the resolution of the TEM image dramatically. Within the framework of the SALVE project, we introduce a newly developed C-c/C-s corrector that is capable of correcting both the chromatic and the spherical aberration in the range of accelerating voltages from 20 to 80 kV. The corrector allows correcting axial aberrations up to fifth order as well as the dominating off-axial aberrations. Over the entire voltage range, optimum phase-contrast imaging conditions for weak signals from light atoms can be adjusted for an optical aperture of at least 55 mrad. The information transfer within this aperture is no longer limited by chromatic aberrations. We demonstrate the performance of the microscope using the examples of 30 kV phase-contrast TEM images of graphene and molybdenum disulfide, showing unprecedented contrast and resolution that matches image calculations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available