4.6 Article

A ZnS nanocrystal/reduced graphene oxide composite anode with enhanced electrochemical performances for lithium-ion batteries

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 44, Pages 30630-30642

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp06609g

Keywords

-

Funding

  1. Academic Advancement Project for the Middle-age and Young Teachers of Tianjin Normal University [52XC1502]
  2. China Scholarship Council [201408120022]

Ask authors/readers for more resources

A simple route for the preparation of ZnS nanocrystal/reduced graphene oxide (ZnS/RGO) by a hydrothermal synthesis process was achieved. The chemical composition, morphology, and structural characterization reveal that the ZnS/RGO composite is composed of sphalerite-phased ZnS nanocrystals uniformly dispersed on functional RGO sheets with a high specific surface area. The ZnS/RGO composite was utilized as an anode in the construction of a high-performance lithium-ion battery. The ZnS/RGO composite with appropriate RGO content exhibits a high reversible specific capacity (780 mA h g(-1)), excellent cycle stability over 100 cycles (71.3% retention), and good rate performance at 2C (51.2% of its capacity when measured at a 0.1C rate). To further investigate this ZnS/RGO anode for practical use in full Li-ion cells, we tested the electrochemical performance of the ZnS/RGO anode at different cut-off voltages for the first time. The presence of RGO plays an important role in providing high conductivity as well as a substrate with a high surface area. This helps alleviate the typically problems associated with volume expansion and shrinkage during prolonged cycling. Additionally, the RGO provides multiple nucleation points that result in a uniformly dispersed film of nanosized ZnS that covers its surface. Thus, the high surface area RGO enables high electronic conductivity and fast charge transfer kinetics for ZnS lithiation/delithiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available