4.6 Article

Hydroxyapatite substituted by transition metals: experiment and theory

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 18, Issue 24, Pages 16457-16465

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cp00474a

Keywords

-

Funding

  1. NSF [CBET-1133883, CBET-1347130, DMR 1310149]
  2. NSF GK-12 program [0947869]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [1310149] Funding Source: National Science Foundation

Ask authors/readers for more resources

Bioceramics are versatile materials for hard tissue engineering. Hydroxyapatite (HA) is a widely studied biomaterial for bone grafting and tissue engineering applications. The crystal structure of HA allows for a wide range of substitutions, which allows for tailoring materials properties. Transition metals and lanthanides are of interest since substitution in HA can result in magnetic properties. In this study, experimental results were compared to theoretical calculations of HA substituted with a transition metal. Calculation of a 10 atomic percent substitution of a transition metal ion Mn2+, Fe2+, and Co2+ substituted HA samples lead to magnetic moments of 5, 4, and 3 Bohr magnetons, respectively. Hydroxyapatite substituted by transition metals (MHA) was fabricated through an ion exchange procedure and characterized with X-ray diffraction, Fourier transform infra-red spectroscopy (FTIR), X-ray photoelectron spectroscopy, and vibrating sample magnetometer, and results were compared to theoretical calculations. All the substitutions resulted in phase-pure M(2+)HA with lattice parameters and FTIR spectra in good agreement with calculations. Magnetic measurements revealed that the substitution of Mn2+ has the greatest effect on the magnetic properties of HA followed by the substitution of Fe2+ and then Co2+. The present work underlines the power of synergistic theoretical-experimental work in guiding the rational design of materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available